Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system.
نویسندگان
چکیده
The recent broad interest on ratio-dependent based predator functional response calls for detailed qualitative study on ratio-dependent predator-prey differential systems. A first such attempt is documented in the recent work of Kuang and Beretta(1998), where Michaelis-Menten-type ratio-dependent model is studied systematically. Their paper, while contains many new and significant results, is far from complete in answering the many subtle mathematical questions on the global qualitative behavior of solutions of the model. Indeed, many of such important open questions are mentioned in the discussion section of their paper. Through a simple change of variable, we transform the Michaelis-Menten-type ratio-dependent model to a better studied Gause-type predator-prey system. As a result, we can obtain a complete classification of the asymptotic behavior of the solutions of the Michaelis-Menten-type ratio-dependent model. In some cases we can determine how the outcomes depend on the initial conditions. In particular, open questions on the global stability of all equilibria in various cases and the uniqueness of limit cycles are resolved. Biological implications of our results are also presented.
منابع مشابه
Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملGlobal qualitative analysis of a ratio-dependent predator–prey system
Ratio-dependent predator—prey models are favored by many animal ecologists recently as more suitable ones for predator—prey interactions where predation involves searching process. However, such models are not well studied in the sense that most results are local stability related. In this paper, we consider the global behaviors of solutions of a ratio-dependent predator—prey systems. Specifica...
متن کاملHeteroclinic Bifurcation in the Michaelis-Menten-Type Ratio-Dependent Predator-Prey System
The existence of a heteroclinic bifurcation for the Michaelis–Menten-type ratiodependent predator-prey system is rigorously established. Limit cycles related to the heteroclinic bifurcation are also discussed. It is shown that the heteroclinic bifurcation is characterized by the collision of a stable limit cycle with the origin, and the bifurcation triggers a catastrophic shift from the state o...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملComputing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response.
Predator-prey models with Michaelis-Menten-Holling type ratio- dependent functional response exhibit very rich and complex dynamical behavior, such as the existence of degenerate equilibria, appearance of limit cycles and heteroclinic loops, and the coexistence of two attractive equilibria. In this paper, we study heteroclinic bifurcations of such a predator-prey model. We first calculate the h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 42 6 شماره
صفحات -
تاریخ انتشار 2001